当前位置:主页>应用方案>开关电源在模拟量采集系统中的应用
开关电源在模拟量采集系统中的应用
来源:作者:本站
  尽管在模拟量采集系统中,对ADC芯片等的供电一般建议最好不用开关电源,以避免其固有的纹波大、噪声等问题,但开关电源仍以其高效率、低价格等优点得到广泛应用,尤其是在工业控制等领域。本文介绍开关电源在模拟量采集系统中的应用,并对可能出现的一些问题进行分析。

  开关电源对ADC芯片工作的影响及解决方法

  电源对ADC芯片的影响,除了体现在电源抑制比(PSRR)参数上,还表现在,当ADC芯片对输入的模拟信号进行采样、保持、转换时,电源电压、参考地的变化,都会对ADC芯片内部采样电路、比较器等的工作产生影响,使得采集结果出现晃动。因此,一般ADC芯片特别是高精度ADC芯片,都建议最好用质量好的线性电源供电。如果采用开关电源,则需要尽力避免它对ADC芯片产生影响。

  图1是一个典型的应用,其中模拟采样用的信号调理电路、ADC和现场模拟信号不隔离,ADC芯片和CPU电源相互隔离。CPU采用控制系统内部电源。而ADC的 5V电源是由 24V电源经过 24V到 5V电源变换而来的。图中左侧部分是典型的串联、降压非隔离型DC-DC变换器的原理框图。设计中,可以根据开关管的开关频率、 5V消耗电流、要求的输出纹波最大值,计算出电感L1、电容C1的合适大小。 来源:www.tede.cn

  为了分析出开关电源对ADC芯片的影响,这里假设信号调理电路及ADC芯片正常运行的耗电是25mA/ 5V,对于光耦部分,如果采用6N136、TLP521等三极管输出型的光耦,则当CPU不启动ADC工作时,光耦全不导通,耗电小于1mA;当CPU启动ADC工作时,将有数据输出Dout、数据准备好Ready等信号经过光耦,光耦处于导通状态,为了达到比较高的通讯速率,光耦总耗电需要25mA/ 5V左右。这样, 5V负载电流将在25~50mA之间来回变动。正常开关电源设计的输出电流应该2倍于最大负载电流,这里设为100mA,下面将要说明负载电流的变化将极大影响 5V,从而影响ADC采样稳定性。

  开关电源的工作原理是,平时Q1的周期性开关动作,再经过L1、C1,得到所需要的输出;而当输出 5V电压发生上升/下降超过一定限度(如几十毫伏),经过采样、反馈后,开关控制电路控制Q1的开关,使得输出电压向 5V回归。在 5V负载比较恒定的情况下,输出 5V的最大纹波,可以根据采样反馈电路工作原理(比如MC34063是通过比较器和锁存器来控制Q1的开关)、开关频率等计算出来。

  但如果是图1中带光耦的情况,开关电源的输出不仅供给相对恒定的负载(如信号调理电路、ADC芯片),而且还要供给光耦等数字部分电路,有可能发生最坏的情况是,当开关管Q1正处于上述稳定工作中的关断时刻,光耦突然被ADC导通,此时L1、C1将要提供50mA的负载电流,而平时稳定工作中L1只提供25mA的电流,剩下电流只能从电容C1中获取,使得C1上的电压即 5V电平下降比较大。这将持续半个开关周期,直到开关管Q1打开。如果开关电源的开关频率是100KHz,而ADC芯片数据Dout的通讯频率也是100KHz左右,将引起输出 5V电压频繁波动,造成更大的输出纹波。在示波器上甚至能看到噪声反馈在 24V输入上。
上一页12 3 下一页